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Intelligent fault diagnosis requires robust capturing of specific features, representing the fault patterns, from time-
series vibration signals. Most of the existing solutions require complex preprocessing steps to make the signal
suitable for training a deep learning model. This article presents a novel vision transformer with a selective
residual in the multihead self-attention network, called Selective Residual Vision Transformer (SeReViT), for
improved robustness in capturing the fault signature from the vibration signal. The novel attention mechanism
incorporates cumulative attention by utilizing the best attention through residual connections in each block of
multihead attention. The best attention term is defined using the highest value of L1-norms of attention value
(the scaled-dot product of key and query) of multiheads. It enables the model to focus on selected best attention
to learn the long-range dependencies among sequential input image patches, resulting in better classification
performance. The proposed framework is validated for fault diagnosis on the Case Western Reserve University
bearing fault diagnosis dataset and the Paderborn University dataset. Since these datasets are already cleaned
data, noisy vibration data are created by adding white noise for the demonstration of the robustness of the
proposed framework. The vibration signals are first converted to images using the short-time Fourier transform
with a fixed window size. The generated images are used to train and validate the proposed SeReViT. The results
outperformed the state-of-the-art convolution-based models for fault diagnosis for both cleaned datasets and
noisy datasets. The short-time Fourier transform is utilized to convert the noisy (raw) vibration signals from
rotating machines to spectrum images.

Spectrum transforms of raw signal
Multi-head attention
Accumulative attention
Manhattan norms

Short-term fourier transform

1. Introduction initialization. These methods assume that vibration signals are well pro-

cessed to remove possible noise contamination during recording.

With the advancements in modern computational technology, deep
learning (DL)-based intelligent fault diagnosis has gained much atten-
tion from various researchers [1,2]. DL-based methods have shown
remarkable performance in capturing complex patterns for image clas-
sification. Intelligent fault diagnosis requires accurate capturing of
anomalies in the vibration signal acquired by suitable sensors in the
running conditions of the machine [3-5]. The vibration signals recorded
as time-series data also contain noise, which makes anomaly detection
complex and inaccurate. Several methods, like domain-adversarial train-
ing of neural networks [6,7] and cross-domain fault diagnosis [8,9] have
been attempted to deal with accurate fault diagnosis. EvoN2N [10] and
GS-EvoN2N [11] have shown commendable performance for the selec-
tion of the best architecture of DNN to ensure accurate fault diagnosis
even with a low number of samples in the target domain, assuming that
a source model, trained on sufficient source data, is available for model
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Many research works have reported the application of convolutional-
based deep learning models with short-time Fourier transform (STFT) to
transform the raw vibration signals into images for fault classification
[12-16]. Yan et al. [12] applied the Hilbert transform to convert the
time-series signal into an envelope spectrum and then fed it to DCNN
for automatic extraction of fault features. Cheng et al. [13] suggested
the use of wavelet transform to extract time-frequency image features
from raw time-series signals, followed by the use of a generative ad-
versarial network to synthesize more images for data augmentation.
The augmented data is used to train the CNN model. The diagnostic
accuracy reported was higher even in a noisy working environment.
Cheng et al. [14] suggested a continuous wavelet transform-local bi-
nary convolutional neural network (CWT-LBCNN) to avoid overfitting
and faster training of the model and reported reliable performance com-
pared to traditional convolutional-based models. Choudhary et al. [15]
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introduced the application of non-invasive thermal imaging to train a
LeNet-5-based convolutional model for fault identification of rotating
machines. Liu et al. [16] suggested multi-source feature fusion followed
by the application of the LightGBM model for fault classification. All
these models rely on convolution-based feature extraction for fault clas-
sification. The convolutional-based methods have shown outstanding
performance for fault diagnosis as well as various other computer vi-
sion applications. The process of convolution is capable of capturing
only local spatial patterns using the wavelet-transformed envelope. For
a diagnostic model to be capable of capturing global dependencies and
contextual information in the image pattern, the attention mechanism
has been proven to be a very effective solution.

Tiago et al. [17] have discussed the importance and effect of atten-
tion mechanisms for capturing contextual information from input im-
ages. Vision Transformer (ViT) by Alexey et al. [18] was the first to
use the attention mechanism for image classification, inspired by trans-
former architecture for natural language processing (NLP). The vision
transformer has been reported to outperform the CNN-based models
if trained with a large number of samples [18]. In recent years, there
have been various improvements in ViT, such as data-efficient image
transformers & distillation through attention [19], hybridization with
the CNN model [20], and swin transformer [21]. Several studies have
been reported on the application of ViTs for image classification and
analysis in different scenarios [22-26]. Wang et al. [22] introduced a
multistage convolutional layer-based ViT-Plus model for the classifica-
tion of the genitourinary syndrome of menopause using OCT images.
They utilized the multi-stage Conv2d layer to convert the original im-
ages into patches rather than using a single Conv2d layer. Sabry et al.
[23] introduced a hybrid mechanism using an auto-encoder, info-GAN,
and vision transformer for image retrieval in an unsupervised manner.
Rodrigo et al. [27] compare the performances of different variants of
ViT with CNN-based models for face recognition applications. Diko et
al. [24] introduced the application residual along with an attention mod-
ule to enhance the feature diversity learning in the vision transformer,
but it does not exploit the cumulative effect of the best-performing at-
tention head. A recent work by Li et al. [25] demonstrated the perfor-
mance of ViT for handwritten text recognition. Nie et al. [26] introduced
scaleViT: a variant of the attention mechanism that exploits multiscale
across spatial dimensions. Their results conclude that ViT outperformed
CNN-based deep models in terms of accuracy and robustness against dis-
tance and occlusions for the aforementioned applications, even when the
deepest CNN-based model is deployed.

The motivation behind this work is to investigate and develop an
attention-based deep learning model capable of capturing global depen-
dencies and contextual information from the STFT images of acoustic
data of the bearings of rotating machines. These vibration data are al-
ways contaminated by various noises during their recording, usually of
uniform distribution. Therefore, this study focuses on the development
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of a robust ViT model that has a cumulative effect to cancel out uniform
noises in the multi-head mechanism. Different heads in the multi-head
attention mechanism encode different relations among input tokens and
produce different feature spaces using different subspaces [28]. Creat-
ing a stronger focus on the dominant head and adding a greater con-
textual confidence can make the model robust enough to counter the
effect of noise in the aggregated feature representation. Therefore, we
present a novel vision transformer with selective residual in multihead
self-attention (SeReViT) for intelligent fault diagnosis. To the best of
our knowledge, there is no study reported on the use of selective resid-
ual in multihead self-attention, where the residual skip connection is
facilitated by the best of the attention heads. The key highlights of the
contributions to this work are summarized below:

1) This work introduces a new multi-head attention mechanism using
a residual connection of selective attention among multiple heads.
The Manhattan norms, also known as the L1 norms, are applied to
the attention scores from the multi-attention heads. The best of the
L1 norms of the attention scores is used to select the attention head
output as a residual add-on to the final projected attention output.
This mechanism provides the multihead attention module to be bi-
ased towards the best learning head with an accumulative effect.

2) The proposed framework (SeReViT) is first pre-trained using a large
number of samples obtained by applying STFT to raw time-series
data from the Case Western Reserve University (CWRU) fault diag-
nostic data recorded at Drive End (DE) with the 7 mil fault diameter
and zero motor load. The pre-trained Res-ViT is then fine-tuned us-
ing small samples from the target domain data: (i) CWRU with 21
mil fault diameters for different non-zero loads, and (iii) Paderborn
University (PBU) data under load and operating conditions.

2. Theoretical background: Vision Transformer

The transformer introduced in the seminal paper “Attention is All
You Need” by Vaswani et. al[29]. is a powerful architecture that revolu-
tionized natural language processing (NLP) tasks. With the success of the
transformer model in NLP, attention-based architecture was extended
to a ground-breaking architecture called Vision Transformer (ViT). In-
troduced in the paper “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale” by Dosovitskiy et al. in 2020 [18], it
has been reported to achieve remarkable results in image classification
tasks. Unlike traditional CNN models, which have been the dominant ap-
proach in computer vision, ViT relies solely on the self-attention mech-
anism of transformers to capture relationships between image patches.

The schematic architecture of the vision transformer and multi-
head attention mechanism has been depicted in Fig. 1. Contrary to the
transformer architecture, the vision transformer consists of only en-
coder blocks that accept the input image as a flattened sequence of
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Fig. 1. Architecture of Vision Transformer for computer vision [18].
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Fig. 2. The proposed selective residual vision transformer (SeReViT): (a) complete block diagram for transformation from raw input (vibration data) to output
(predicted fault class); (b) unit block of the encoder with multi-head Res-Attention; and (c) detailed block diagram of the multi-head attention mechanism with

residual connection for accumulative attention.

fixed-size patches. These patches are then embedded with class tokens
to capture the class-wise visual information contained in the sequential
patches. The image patches are then processed by the encoder block,
which consists of multiple heads of self-attention and feed-forward neu-
ral networks (as shown in Fig. 1(b)).

3. SeReViT: Selective Residual Vision Transformer

This section presents the proposed SeReViT with selective residual
in the multihead attention module. Since attention is the major compo-
nent of ViT that captures the relationship between the sequential input
patches, this section aims to present the new mechanism of multihead
self-attention. Fig. 2 depicts the complete block diagram of the proposed
framework.

The major blocks are explained below.

Input block: The raw vibration signal is first converted to spec-
tral images using STFT (explained in Section 4.2) and then into spatial
patches. Since the transformer architecture does not inherently possess
knowledge of spatial relationships, positional embeddings are provided
for the understanding of patch positions within the image. The learnable
positional embeddings are provided to represent the spatial importance
of each patch.

Multi-Head Attention The multi-head attention is a parallel com-
bination of multiple self-attention heads. Each attention head receives
input embeddings in the form of three components: Query (Q), Key (K),
and Value (V) via three different linear layers with learnable parame-
ters. The attention score of each head is computed using the softmax
of the correlation between K and Q as shown in Eq. (2). The attention
output of each head is defined in Eq. (3).

T
A, =2 €]
Vd
Ageore = SoftMax{A,} (2)
A = V‘ASEOVE (3)

where A, represents the pre-softmax attention value, A, represents
the attention score, d represents the hidden size of the attention head,
and A presents the attention output of the head. The proposed novel
multi-head self-attention with L1 norms-based residual connection is il-
lustrated in Fig. 2 and is explained in the following steps.

1) The scaled Dot-Product Attention Block (Fig. 2(a)) is made to pro-
duce two outputs: attention score, A,.,.. which is the softmax of the
scaled value of matrix multiplication of Q & KT and attention out-
put, A which is the matrix multiplication of attention score and the

value (V) as given by Egs. (2) and (3), respectively. Both the outputs
from all such attention heads are collected.

2) The attention outputs are concatenated and passed through a linear
projection layer as in the original version of ViT.

3) L, Norms of the attention value (A, = QK Ty \/E ) from all attention
heads are computed and sorted. The attention score with the highest
norm value is treated as the attention head having the highest at-
tention probability. The attention output (M atMul of the attention
score and the value (V) terms) corresponding to the best attention
probability is collected. This attention output is added as the residual
term to the final projected attention output by the linear projection
layer, shown in Fig. 2(b). If the number of heads in the multi-head
attention block is H, then the final attention output is computed by
using Egs. (4) and (5)

j =arg max |40, @

Afinag = LinearProj([A; Ay - Ay]) + A; 5)
where LinearProj(.) represents the linear projection of the concate-
nated output to convert the dimensionality back to the same dimen-
sionality as the output of a single head.

The inclusion of a sorting mechanism, even though a non-
differentiable step, does not produce gradient error during the back-
propagation for model weight updates. PyTorch-style autograd works
based on the computational graph traced during the forward pass. Once
the best attention head is selected in the forward pass, the computational
graph is fixed, and only the selected tensor is part of the graph. There-
fore, backpropagation of the residual connection flows only through the
selected head, and Other heads (non-selected) receive no gradient via
residual.

MLP block: MLP block is a non-linear feedforward neural network
that processes the token embedding and extracts higher-level features
from the attention output. We have used two linear layers with a non-
linear activation function in between them to construct the MLP block.
The first linear layer applies a linear transformation to the input fea-
tures, mapping them to a higher-dimensional space of 4 times the em-
bedding dimension. Next, a non-linear activation function is applied
element-wise to the transformed features. This introduces non-linearity
into the model and allows it to capture more complex relationships be-
tween the input features. The output of the non-linear activation layer
is given to the second linear layer, which maps the features back to the
original embedding dimension.
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4. Experimental results and discussion

The efficacy of the proposed framework of ViT with selective residual
in multihead self-attention is demonstrated on bearing fault diagnosis
datasets: (i) CWRU fault diagnosis bearing data [30] and (ii) Paderborn
University dataset [31].

4.1. Dataset description

4.1.1. CWRU Bearing data:

The bearing dataset provided by CWRU [30] was recorded on a ball
bearing testing platform. Using electro-discharge machining, the motor
bearings were seeded with fault diameters of 7, 14, and 21 mils (1 mil
= 0.001 in.). For each case of the fault diameter, defects were created at
the inner raceway, rolling element (i.e., ball), and outer raceway of the
motor bearing. The vibration signal represents four different states of
the machine: (a) healthy (Normal: N), (b) inner race (IR), (c) outer race
(OR) and (d) rolling element (ball: B). The vibration data were recorded
for each fault diameter with motor loads of 0 to 3 hp and motor speeds
of 1730 to 1797 RPM. The datasets were recorded under four different
cases of fault location and sampling frequency:

a) Normal baseline data recorded at 12k samples/sec

b) Drive end (DE) fault data with 12k samples/sec

c) Drive end (DE) fault data with 48k samples/sec

d) Fan-End (FE) bearing fault data (recorded at 12k samples/second)

4.1.2. Paderborn university (PBU) dataset:

The Paderborn University dataset [31] is the best dataset for the anal-
ysis of bearing faults on electromagnetic rotating machines under a wide
variety of operating conditions. The vibration signals were recorded by
performing 32 different bearing experiments categorized as

i) 6 different experiments were conducted on healthy bearings.
ii) 12 different experiments were conducted on artificially damaged
bearings.
iii) 14 Different experiments were conducted on real damaged bearings
by accelerated lifetime tests.

Datasets from each experiment have measurements of motor phase cur-
rents, vibration, speed, torque, bearing temperature, and radial force.
Each dataset contains 20 measurements of 4 seconds under four dif-
ferent settings of speed, torque, and force, termed as load settings.
These four load settings are (i) L1: NO9_MO07 _F10 (speed = 900 rpm,
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torque = 0.7 Nm & radial force = 1000N), (ii) L2: N15_M01_F10
(speed = 1500rpm, torque = 0.1 Nm & radial force = 1000N) (iii)
L3: N15_MO07_F04 (speed = 1500 rpm, torque = 0.7 Nm & radial force
= 400N) and (iv) L4: N15_MO07 _F10 (speed = 1500 rpm, torque = 0.7
Nm & radial force = 1000N). There are two classes of faults: inner
race (IR) damage and outer race (OR) damage. Each class of fault
encompasses a wide variety of damages, with different levels of damage
represented by the extent of the damage. The details of different bearing
names, fault level (extent), fault class, and different settings of speed,
torque, and force can be found in [31].

4.2. Dataset pre-processing

The fault diagnosis data contains time-series samples recorded for
a fixed time interval. For the training of the proposed framework, the
recorded time-series signals are converted into graphical representations
of frequency transforms, called short-time Fourier transforms (STFT).
Fast Fourier transforms (FFT) are applied sequentially on the windowed
time-series data to obtain time-localized frequency patterns [32]. For
this conversion, the Python library of matplotlib.axes.Axes.specgram has
been applied with a fixed window size of 100 samples for CWRU and
400 for the PBU dataset, the number of data points used in each block
for the FFT (NFFT) of 32, and the sampling frequency (Fs) of 1000.
The spectrogram representation of n samples (segmented) with 100 data
points has been shown in Fig. 3.

4.3. Evaluation scheme

1. Source Data for pre-training The source dataset is prepared from
12k Hz Drive End (DE) fault with fault diameter = 7 mil and load
= 0 hp. The recorded sample of length 121000 from each class is
used. Therefore, the time series data with data points 121000 is con-
verted into 1210 images per class by applying STFT with a window
length of 100 points. The combined dataset, including all four classes
(N:IR:B:OR) contains a total of 4840 sample images.

2. Target-1: The target-1 (T1) is prepared using the time-series signals
recorded at Fan End (FE) for the 12k Hz with 21 mil fault diameters
and at 1, 2, & 3hp motor loads. Therefore, a total of three differ-
ent sub-cases (datasets) are created using different conditions of the
motor load, each having 4 classes: N:IR:B:OR. For each case, 40,000
data points per class from the time-series signal are used to create
400 images per class, assuming 100 points as window size for STFT
conversion.

Window-1 B Sample 1
(100 x 1) M = #
B
Window-2 i._-_
i S le 2
(100 x 1) W ) T ample
I I
! I
——_r—
Window-n ‘ = Sample n
(100 1) Sk

Fig. 3. Sample examples of STFT-based conversion of time-series signal into spectrogram images with window size = 100.
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3. Target-2: Another group of target datasets, target-2 (T2), is created
under four different operating conditions of load and torque settings
named L1, L2, L3, & L4. For each case, 200,000 data points from one
measurement file are used to create 500 images per class with 400
data points as window size for STFT conversion.

4. Target datasets with AWGN The time series data samples from both
the target datasets T1 and T2 are now corrupted with AWGN having
strength such that the resulting signal has SNR = 10dB. Then, STFT
conversion is applied with the same time window to obtain the same
number of images per class as mentioned above for the cases T1 and
T2.

For the above target cases, the dataset was split into train, test, and
validation using a random sampling method.

4.4. Comparison with state-of-the-art methods

The proposed framework of ViT with the selective residual in the
multi-head self-attention block is compared with state-of-the-art meth-
ods for image classification. The state-of-the-art methods selected are
listed as Support Vector Machine (SVM) as baseline method [33],
SqueezeNet [34], GoogleNet [35], DenseNet [36], ResNeXt [37], Effi-
cientNet [38], Vanilla ViT [18] (base model with 12 encoder blocks:
“B_16_imagenetlk”, and ReViT [24].

The SVM model is selected as a baseline model for comparison and
is trained using flattened features obtained using the spectrogram im-
ages to maintain consistency in the image-based diagnosis. For all other
models, pre-trained weights are downloaded from the PyTorch hub, cus-
tomized to make them compatible with the number of classes in the tar-
get dataset, and then fine-tuned on the target dataset cases: T1, T2, and
with AWGN with SNR = 10dB.

4.5. Evaluation metrics

The performance of a diagnostic model is measured in terms of the
following evaluation metrics:

1. Classification accuracy (CA): Classification accuracy (CA) as
widely accepted in the literature [7,39,40]. CA is defined as

_ Number of correct classifications

CA= x 100 % 6
Total number of test samples ’ ©)

2. Transfer Improvement (7'1): T 1 defines the relative improvement of
the performance of a model with respect to a baseline method. T'1
in terms of average C A is calculated as TI = CA — C Ay, ., Where,
CA is the average CA for datasets under various operating condi-
tions.

3. Confusion Matrix: The confusion matrix is the graphical representa-
tion of classification performance in terms of the number of correct
and missed classifications arranged as ¢ x ¢ matrix, where ¢ repre-
sents the number of classes.

4.6. Implementation details

The proposed ViT with the novel multi-head self-attention mech-
anism, as shown in Fig. 2 is implemented using the PyTorch library
of Python on the Google Colaboratory platform. The multi-head self-
attention with residual connection, as depicted in Fig. 2 is implemented
as a Python class definition using the nn-module of PyTorch. All other
blocks are defined similarly to the standard ViT model. The classifier
head is defined for four classes present in the source dataset: N:IR:B:OR.
The model’s hyperparameters were selected as follows: number of en-
coder blocks = 12, number of heads in multi-head attention blocks =
4, patch size = 16 x 16, input image size = 128, and number of hidden
sizes for MLP = 768. The weights of the proposed model are initialized
using Xavier initialization. Then, the model is trained with source data
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described in 4.3 for 40 epochs on the NVIDIA A100-SXM GPU from the
Google Co-Laboratory.

The model trained on the source dataset serves as a pre-trained
model for fine-tuning models for other cases of the target dataset. There-
fore, the weights of the model trained on the source dataset are saved as
a weight dictionary. Now, the models for the target datasets are trained
using the following steps:

i) Import all the definitions required for the proposed model’s imple-
mentation.
ii) Load the pre-trained (source) model from the saved dictionary.

iii) Re-define the classifier head to make it suitable for the number of
classes in the target dataset. For target datasets in T1, the number of
classes remains the same, which is equal to 4. For target datasets in
T2, the classifier head is redefined for three classes.

iv) Now the model with the new classifier head is fine-tuned with the
target samples for 40 epochs for both cases of target datasets: (i)
T1, & T2, and (ii) T1, & T2 with AWGN (SNR = 10dB). The training
statistics are evaluated in terms of %C A with respect to epochs on the
training and validation datasets. The comparisons of the validation
%C A curves for one of the PBU datasets (T2-L1) are shown in Fig. 4.

4.7. Results

The performance in terms of CA for the proposed ViT model and
the aforementioned state-of-the-art models on target datasets T1 and T2
with and without noise is presented in Tables 1 and 2. Table 1 contains
the performance comparisons of all the aforementioned models on the
three different operating conditions of the CWRU dataset (T1) for both
cleaned and noisy datasets. Similarly, Table 2 contains the %C As of all
models for four different cases from the PBU dataset under cleaned and
noisy cases.

Apart from the performance evaluation in terms of %C A, the classifi-
cation performance has also been evaluated using the confusion matrix.
The confusion matrices for all the models on one of the target datasets
(T2-L1) and the same data with added noise have been shown in Figs. 5
and 6. It can be observed that the proposed framework performed well
with even the noisy dataset, with minor misclassification. Fig. 7 com-
pares the TI charts in terms of a, calculated overall sub-cases of (a)
CWRU Dataset and (b) CWRU Dataset with AWGN (SNR =10dB). Simi-
larly, Fig. 8 shows the TI charts in terms of CA for (a) PBU Dataset and
(b) PBU Dataset with AWGN (SNR = 10dB).

4.8. Ablation study

An ablation study was conducted to analyze the effect of the follow-
ing aspects of the proposed framework: (i) the norm to select the best
attention score for residual in multihead attention, (ii) the window size
for STFT, and (iii) the number of data points in each block of the FFT

4.8.1. Effect of norm

L, Norm is applied in the proposed framework to select the best
attention head to encourage the head specialization under sparse dis-
tributions of multihead learning. To further strengthen the generaliza-
tion, the proposed framework was trained on all cases of the target sets
(with and without noise) by replacing L-norm with L,-norm (Euclidean
norm) and L -norm. The classification performances are shown in
Table 3.

It can clearly be observed that the model works better with the L,-
norm, also known as the Manhattan Norm, in the current scenario of
attention scores of input patches. The L; norm is applied here in grid-
based systems, which helps the multihead attention module to capture
the best grid patterns produced by the individual head. In the case of
other norms, the attention scores of heads are flattened along the spatial
dimensions to apply the norm. The spatial geometric grid is completely
lost; therefore, the model does not benefit from head specialization due
to the skip connection of the best attention.
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Table 1
Diagnostic performance in term of CA on the datasets T1.
SVM  SqueezeNet  GoogleNet  DenseNet  ResNext  EfficientNet Vanilla ReViT SeReViT
Target Load [33] [34] [35] [36] [371 [38] ViT[18] [24] (Proposed)
1hp 95.9 94.4 95.6 95.3 95.3 94.7 97.5 99.1 99.7
T1 2hp 86.3 91.3 90.6 93.8 91.3 96.3 98.1 97.5 99.7
3hp 87.5 87.5 88.1 87.5 90.3 90.9 96.3 98.8 99.4
T1 1hp 88.8 88.4 87.8 90.6 89.4 90.3 94.7 96.3 98.4
(SNR= 2hp 81.3 86.3 90.6 86.3 90.6 91.3 91.3 97.5 98.8
10dB) 3hp 78.1 81.3 81.3 86.3 83.1 86.3 92.4 97.8 98.1

4.8.2. Effect of window size and data points in STFT conversion

The window size is selected based on the segment length selected for
the preparation of training samples in [41]. The segment length provides
the basis to create the samples from the time-series data with features
equal to the length of the segment. The size of the segment is best de-
cided based on the number of data points recorded in 1/4th of the time
taken for one rotation of the bearing shaft [30,31]. Therefore, the win-
dow sizes for CWRU data and the Paderborn University data are selected
as 100 and 400, respectively [41]. However, we validated our model by
varying the window size and the number of data points (NFFT) to fur-
ther generalize the proposed framework. Experimentations by varying
the window size and the value of NFFT were performed on the first
case from the target-1 dataset (T1-1hp). The classification performance
is shown in Table 4.

This experimentation clarifies that changing the number of data
points in each block of NFFT has a very negligible effect, provided that
the number of overlaps is less than the size of NFFT, a required con-

dition for STFT. The variations in the window size change the number
of samples created. Additionally, if data points recorded in 1/4th of the
time taken for one rotation are used as one sample, it better represents
the fault signature [41]. Therefore, the window size of 100 for CWRU
performs better.

4.9. Discussion

The classification performances of the proposed framework and se-
lected state-of-the-art methods lead to the following observations:

i) The performance comparisons in Tables 1 and 2 for target datasets
T1 and T2 with and without AWGN (SNR = 10dB) reveal that the ac-
curacy and the reliability of image-based diagnosis have been signif-
icantly improved by adding the residual of the best attention output
as described in Section 3. The accumulative attention enables the
model to capture contextual information even with the spectrogram
images obtained with noisy data.



A.K. Sharma and N.K. Verma Pattern Recognition 172 (2026) 112497

SVM SqueezeNet GoogleNet
w0l 27 1 w0 28 w0l 26 2
o) [72] o)
© © O
O 1 2 O 1 O 1 1
(O] () (O]
2 2 2
=2 2 1 =2 2 3 =2 2
0 1 2 0 1 2 0 1 2
Predicted Class Predicted Class Predicted Class
DenseNet ResNeXt EfficientNet
* * w0l 26 2
] 7] ]
o © O
o O O 1 2 2
(O] () (O]
> =} >
(= (= = 2 1
0 1 2 0 1 2
Predicted Class Predicted Class Predicted Class
Vanilla ViT ReViT SeReViT
w0 w0 1 » 0 L]
%] 7] %]
o © O
O 1 O 1 O 1
(O] () (O]
2 2 2
=2 3 =2 =2 48
0 1 2 0 1 2 0 1 2
Predicted Class Predicted Class Predicted Class

Fig. 5. Confusion matrices for the dataset case T4-L1; class label {‘0’, 1’, ‘2’} represents the class name {‘H’, ‘OR’, ‘IR’}.

Table 2
Diagnostic performance in term of CA on the target datasets from T2.

SVM  SqueezeNet  GoogleNet  DenseNet  ResNext  EfficientNet Vanilla ReViT SeReViT

Target L.S. [33] [34] [35] [36] [37]1 [38] ViT[18] [24] (Proposed)
L1 94.7 95.83 95.83 95.3 95.83 93.75 96.88 98.96 100
L2 93.3 94.7 91.7 95 95.7 97.3 96.3 98.3 99.7
L3 93.3 93.3 90.7 94.3 96.7 96.7 94.3 99.7 100
T2 L4 90.7 90.7 94.7 91.7 93.3 92.3 96.7 98.7 99.3
L1 95 90 89.7 93 90.7 93.7 96.3 97.7 98.3
L2 78.7 93.3 87.5 91.7 90 95.3 93.3 95.3 97.7
T L3 93.3 87.5 90.3 90.7 93.7 95 91.7 98 98.3
(SNR=10dB) 14 875 913 89.3 87.5 91.3 91.7 93.3 %7  97.3
Table 3

Effect of various norms on the performance (%CA) on the target datasets from group T1 and T2.

Target Datasets

T1 T1 (SNR=10dB) T2 T2 (SNR=10dB)

Method

1lhp 2hp 3hp 1hp 2hp 3hp L1 L2 L3 L4 L1 L2 L3 L4

SeReViT with L,-Norm 99.7 99.7 99.4 98.4 98.8 98.1 100 99.7 100 993 983 977 98.3 97.3
SeReViT with L,-Norm 988 975 975 98.1 97.5 96.3 97.7 94.3 94.3 96.7 917 923 90 91.7
SeReViT with Loo-Norm  97.5  96.3  94.7 97.5 94.7 96.3 96.7 96.9  98.3 97.7 953 953 97.7 95.3




A.K. Sharma and N.K. Verma Pattern Recognition 172 (2026) 112497

SVM SqueezeNet GoogleNet
»n 0 26 2 n 0 23 2 3 »
[2) 175} (2}
) © )
O 1 1 O 1 1 39 4 &)
) o) )
2 - 2
0 1 2 0 1 2
Predicted Class Predicted Class Predicted Class
DenseNet ResNeXt EfficientNet
w0l 26 1 1 * w0 22 4 2
n 7] [0}
) © )
O1| 3 &) O 1 1
(O] (0] (0]
2 2 2
=2 3 = =2 1
0 1 2 0 1 2 0 1 2
Predicted Class Predicted Class Predicted Class
Vanilla ViT ReViT SeReViT
7] [7)] 0 (7] O
) [72] )
© S 5
@) O 1 O 1
(O] ) ]
=) > =)
= =) 1 =)
0 1 2 0 1 2 0 1 2
Predicted Class Predicted Class Predicted Class
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Fig. 8. TI charts in terms of CA for (a) PBU Dataset and (b) PBU Dataset with AWGN (SNR =10dB).

Table 4

Effect of window size and NFFT on the performance (%CA) on the target dataset T1, 1hp.
Window size 50 200
NFFT 16 32 64 32 64 16 32 64
Samples/class 800 800 800 400 400 200 200 200
%CA 95.6 96.3 94.7 99.7 99.7 99.4 90.3 91.3 91.3

%CA with Noise =~ 91.3 92.4 91.3

98.4 98.4 981 86.3 863 87.8

ii) The training performance of most of the models varies from dataset
to dataset. The validation curves for the various models for one of the
target data cases (T2-L1) show the faster convergence and stability
of the proposed model compared to all other models.

iii) The confusion matrices shown in Figs. 5 and 6 for the target dataset
case T2l-L1, with and without noise, respectively, demonstrate the
classification report against the ground truth. The numbers in the di-
agonal boxes provide the number of correct classifications, whereas
the off-diagonal numbers show misclassifications. It can be observed
that there are very few misclassifications by the proposed frame-
work, even with added noise. Therefore, the proposed framework is
more robust against the input noise in the recorded vibration signal.
TI charts shown in Figs. 7 and 8 illustrate the overall improvement
of the proposed framework compared to all the state-of-the-art mod-
els for image classification, assuming SVM as the baseline method.
It can be noted that the performance of some of the models is even
poorer than the baseline method. However, in the case of datasets
under noisy conditions, all the deep learning models have better per-
formance, which shows that SVM is much more affected under noisy
conditions.

Overall, it can be concluded that the proposed framework of Res-
ViT and the training mechanism provide sufficient model learning
even under noisy conditions. The fine-tuned model with the target
dataset cases performs up to 100 % classification accuracy; however,
the computational complexity in terms of feed-forward response time
for testing would be much higher than that of fully connected models
obtained by using EvoN2N [10] and GS-EvoN2N [11] for a similar
application of fault diagnosis. Therefore, the proposed framework
can be suitable for image-based diagnosis in applications to avoid
the need for signal processing/filtering for noise removal.

iv

—

—

Vv

4.10. Complexity analysis

The complexity of the multi-head attention mechanism in traditional
vision transformers per layer is O(n® - d), where n and d represent the

sequence length and dimension of the heads, respectively [18]. In our
proposed framework, we introduce a sorting step for the L-1 norms of
attention scores in each layer. Computing the L-1 norms for a matrix
of size n X n x d has a complexity of O(n - n - d), and the complexity for
sorting the L-1 norms having a size equal to the number of heads d is
O(d - log(d)). Therefore, the total complexity of ViT with the proposed
attention mechanism becomes O(n? - d) + O(n® - d + d - log(d)). By ignor-
ing the summation term with lower complexity, the overall time com-
plexity of the proposed framework is given by O(n? - d + d - log(d)).

5. Conclusions

In this research work, we propose a novel framework of selective
residual in multihead self-attention for the Vision Transformer (ViT).
The proposed framework utilizes the Manhattan (L-1) norms of atten-
tion scores to identify the best attention output from the multiheads. The
attention scores are sorted according to L-1 norms to get the highest at-
tention score and the corresponding attention head index accordingly.
The attention output of that particular head is carried forward to add
to the final projected attention as a residual. Thus, the selective resid-
ual provides the model to focus the training on the specialized attention
head. The validation results on the fault diagnosis datasets taken from
the CWRU dataset and the PBU dataset under variable operating condi-
tions, as well as with and without noise, justify the robustness against
the noise contamination. Also, it demonstrates that the proposed frame-
work achieves superior diagnostic performance compared to the vanilla
ViT model as well as ReViT. The performance on the noisy data with
AWGN (SNR = 10dB) shows that the proposed framework may be a
promising solution for fault diagnosis using raw data, alleviating the
need for noise filtering.

The inclusion of L; norm-based sorting in the feedforward just pro-
vides selective residual and does not affect the gradient propagation
for the weight update; therefore, the mechanism can be applied for
any other form of multihead attention mechanism. This work does not
demonstrate and validate the application of similar residual connections
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for other variants of the ViT models. This work can be extended to apply
the sorting-based selective residual in other variants of ViT for improved
performance and robustness. Also, in the current research work, we con-
sidered improving the capability of capturing contextual information in
sequential dependencies. This work can further be extended to include
mechanisms that can also capture spatial patterns and apply the selec-
tive residual.
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